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A model for electron tunneling through a space-charge induced potential barrier at a semiconductor/
ferromagnetic metal Schottky contact is developed and applied to the exploration of the bias dependence of the
spin-polarized tunneling current. It is found that significant bias dependence of the spin polarization of the
current can result from changes in the shape of the potential barrier due to the applied voltage. Specifically, we
show that the dependence of the transmission coefficient on the shape of the barrier potential can lead to a
nonmonotonic bias dependence of the spin current and may result in a reversal of the sign of the spin-current
polarization at small voltages. Numerical results are presented for GaAs /Fe Schottky contacts.
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I. INTRODUCTION

Ferromagnetic metal contacts to semiconductors are of
current interest due to their potential use in spintronic
devices.1 Exploiting the electron spin in information process-
ing semiconductor devices requires the ability to inject spin-
polarized charge carriers, to control their spin while they
transit the semiconductor, and to extract them in a way that is
sensitive to their spin. The first and last requirements are, in
principle, met by ferromagnetic metal contacts to semicon-
ductors. It has been shown that injecting charge carriers with
significant spin polarization from a ferromagnetic metal into
a �nonmagnetic� semiconductor is possible through an injec-
tion process that is itself spin dependent.2 Tunneling through
a potential barrier can provide such a mechanism3 and spin-
polarized injection has been demonstrated to be effective in
Fe /GaAs �Ref. 4� and Fe /AlGaAs �Ref. 5� Schottky contacts
and Fe /Al2O3 /Si contacts.6 The Fe /GaAs material system,
in particular, is being explored extensively because high-
quality epitaxial interfaces can be prepared. Somewhat unex-
pectedly, recent work has shown that the spin polarization of
the injected charge carriers varies significantly with the bias
voltage applied and that it may even change sign.7–9 Valen-
zuela et al.7 explored the dynamic tunnel resistance of
Fe /Al2O3 /Al structures and Crooker et al.8 reported experi-
ments on Fe /GaAs Schottky contacts that showed equal sign
of the spin current for forward and reverse biases, implying a
change in sign of the relative current polarization between
the two voltages applied. More detailed subsequent
investigations9 observed the change in sign in the current
polarization at −0.1 V for two Fe /GaAs contact samples and
at +0.01 V for another. Additional relevant experimental
work was reported in Ref. 10.

A possible explanation for the bias dependence of the spin
polarization, based on details of the electronic structure of
the Fe /GaAs interface, has been proposed by Chantis et al.11

That work focuses on the transfer of electrons through the
Fe /GaAs interface and does not address the bias dependence
of the tunneling probability through the depletion region,

which is the subject of the model presented in this work.
Spin extraction through Fe /GaAs Schottky contacts has

been examined recently by Dery and Sham.12 These authors
pointed out that the highly doped region near the metal/
semiconductor interface, which is used to fabricate spin in-
jection structures, may give rise to bound states in the semi-
conductor near the interface, and that these bound states can
affect the spin polarization of the electron transfer between
the semiconductor and the metal leading to a bias depen-
dence of the spin polarization.

In the present work we show that the voltage dependence
of the shape of the potential barrier through which the elec-
trons tunnel may lead to a strong bias voltage dependence of
their spin polarization. To ensure wide applicability of the
model, few assumptions regarding details of the electronic
structure of the metal and the semiconductor/metal interface
are made. It is found that, even in absence of pronounced
features in the electronic structure of the ferromagnetic con-
tact or of bound states in the semiconductor near the inter-
face, the sign of the injected carrier polarization may change
with the applied voltage.13 We describe the model in Sec. II
and present a simple analytical approximation followed by
numerical results for Fe /GaAs parameters in Sec. III. Con-
clusions are drawn in Sec. IV. The appendix presents a brief
outline of an alternative numerical treatment.

II. MODEL DESCRIPTION

The model developed in this work represents contacts of
the general type studied experimentally, i.e., ferromagnetic
contacts �Fe in Refs. 8 and 9� that form well-defined
Schottky contacts on an n-type semiconductor �GaAs in
Refs. 8 and 9�. To enable significant tunneling of electrons
through the space-charge potential barrier the semiconductor
is assumed to be heavily doped near the contact interface.
The domain of interest for the model is divided into three
spatial regions as shown in Fig. 1. A voltage applied to the
�n-doped� semiconductor/metal contact drops across a layer
bounded by z=0 �in the semiconductor� and z=d �at the
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semiconductor/metal interface�. Wave functions that are so-
lutions to the electronic structure problem in regions I and II
need to be matched at z=0, and wave functions for regions II
and III need to satisfy matching conditions at z=d.

The spin polarization of the tunneling current between
regions I and III can depend on the voltage applied because
�a� the electronic states in regions I and III that participate in
the tunneling process shift relative to each other with bias
and different semiconductor and metal states participate in
tunneling at different bias voltages and �b� the barrier poten-
tial changes shape with applied voltage causing the spin de-
pendence of the transmission coefficients at a fixed energy to
vary. In Ref. 12 the effect of bound states that can form in
the semiconductor near the interface because of the doping
profile was studied. The relative importance of the contribu-
tion to tunneling from these bound states depends on bias
and can change the spin polarization of the tunneling current.
In Ref. 11 the influence of an interface resonance state for
minority spins near the Fermi energy at the Fe /GaAs inter-
face was studied and found to lead to a voltage dependence
of the spin polarization of the tunneling current. The model
presented in this work focuses specifically on the effect of
the change in the shape of the tunnel barrier on the spin
polarization of the tunneling current.

The relevant electronic states of the �nonmagnetic� semi-
conductor are assumed to be described by effective-mass
theory with a conduction-band minimum at the � point. The
wave functions in region I consist of incident and reflected
Bloch states in the bulk semiconductor �z�0�. They are
written as

�I�r�� = �1/�N�eik��r���eikz,s
0 z + Re−ikz,s

0 z�u0�r�� . �1�

Here, u0 is the cell-periodic part of the Bloch function at the
� point and the normalization volume consists of N unit cells
�of volume �0�.

In region II, the potential barrier layer, the effective-mass
Schrödinger equation yields two linearly independent �real�
solutions for the envelope function, �1�z� and �2�z�. We
choose the combination of the solution functions that satisfy
�1�0�=1, �

d�1

dz �0=0 and �2�0�=0, �
d�2

dz �0= 1
� . �1 /� is the

Wronskian of �1 and �2 and is independent of z.� Matching
the wave function and its derivative at z=0, we obtain for
region II

�II�r�� = �1/�N�eik�r���1 + R��1�z� + ikz,s
0 ��1 − R��2�z��u0�r�� ,

�2�

where the coefficient R is determined by matching conditions
at the interface between regions II and III. It is convenient to
work with the Fourier transforms of the envelope functions

defined by �̂i�kz,s�= �1 /L��0
Ldz�i�z�exp�−ikz,sz�, where L de-

notes the normalization length. Separating forward and back-
ward propagating parts, the total wave function in region II
becomes

�II�r�� = �1/�N�eik��r�� 	
kz,s�0


��1 + R��̂1�kz,s�

+ ikz,s
0 ��1 − R��̂2�kz,s��eikz,sz + ��1 + R��̂1�− kz,s�

+ ikz,s
0 ��1 − R��̂2�− kz,s��e−ikz,sz�u0�r�� . �3�

Here the sum includes only non-negative kz,s. The wave
function in region II is now a sum of terms of form 	�s

+

+
�s
−, where �s

+ and �s
− are effective-mass states of wave

vector �k�� ,kz,s� and �k�� −kz,s� that propagate toward and away
from the metal/semiconductor interface, respectively.

The boundary conditions at the metal/semiconductor in-
terface may be written as Jz��II�=Jz��III�, where Jz is the z
component of the current-density operator at z=d and �III is
the component of the wave function in region III.14,15 We
consider the case of a �specular� interface that does not in-
duce scattering between states of different k��. Hence, �III is a
linear combination of metal Bloch states with wave vectors
�k�� ,kz,m� and �k�� −kz,m� near the Fermi level, �III=��m

+ +��m
− .

The interface matching conditions may be written as

	�s
+�Jz��s

+�av + 
�s
+�Jz��s

−�av = ��s
+�Jz��m

+ �av

+ ��s
+�Jz��m

− �av,

	�s
−�Jz��s

+�av + 
�s
−�Jz��s

−�av = ��s
−�Jz��m

+ �av

+ ��s
−�Jz��m

− �av, �4�

where the coefficients 	 and 
 have the form given in Eq.
�3�.

The matrix elements are integrated over a unit cell at the
interface. The matrix elements that involve wave functions in
one material only �here the semiconductor� are readily
evaluated as �s

+,−�Jz��s
+,−�av=  ��kz /m*� / �N�0� and

�s
+,−�Jz��s

−,+�av=0 if the system has a C2 symmetry axis par-
allel to the z direction, as is the case for �100� GaAs /Fe, in
addition to time-reversal symmetry. Furthermore, the same
symmetry considerations yield for the matrix elements that
connect regions II and III,

FIG. 1. Schematic band diagram of the semiconductor/
ferromagnetic metal contact in equilibrium. The region of the semi-
conductor displayed is assumed to be degenerately doped �n type�.
The energies E0↑ and E0↓ denote the lower edges of the majority-
spin and minority-spin bands in the ferromagnetic metal.
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�s
+�Jz��m

+ �av =
1

N�0
ei�kz,m−kz,s�d�I�k�s

+,k�m
+ � − I�k�m

− ,k�s
−��

= − �s
−�Jz��m

− �
av
* ,

�s
+�Jz��m

− �av =
1

N�0
ei�kz,s+kz,m�d�I�k�s

+,k�m
− � − I�k�m

+ ,k�s
−��

= − �s
−�Jz��m

+ �
av
* , �5�

with

I�k�a
,k�b

� = �N/2m��
0

d3r�
a

*pz�b
.

Again using the symmetry described above, we find that
I�k�a

− ,k�b
−�=−I*�k�a

+ ,k�b
+� and I�k�a

+ ,k�b
−�=−I*�k�a

− ,k�b
+�. It is conve-

nient to absorb the phase factors into the coefficients by de-
fining, for example, 	�=	eikz,sd, etc. The matching condi-
tions for z=d now can be recast as

	��kz,s/m* = ���I�k�s
+,k�m

+ � − I�k�m
− ,k�s

−�� + ���I�k�s
+,k�m

− �

− I�k�m
+ ,k�s

−�� ,


��kz,s/m* = ���I�k�s
+,k�m

− � − I�k�m
+ ,k�s

−��* + ���I�k�s
+,k�m

+ �

− I�k�m
− ,k�s

−��*. �6�

Restricting ourselves to cases in which only states with
small kz,s are involved, i.e., states that are close to the bottom
of the conduction band in the semiconductor, we may expand
the integrals to first order in kz,s as

I�k�s
+,k�m

+ � − I�k�m
− ,k�s

−� = �0�k�m
+ � + kz,s�1�k�m

+ � ,

I�k�s
+,k�m

− � − I�k�m
+ ,k�s

−� = − �0
*�k�m

+ � + kz,s�1
*�k�m

+ � . �7�

We may then write the interface matching conditions in com-
pact form as

	���kz,s/m*� = ����0 + kz,s�1� + ���− �0
* + kz,s�1

*� ,


���kz,s/m*� = ���− �0 + kz,s�1� + ����0
* + kz,s�1

*� . �8�

Rearranging these equations, assuming incidence from the
semiconductor ���=0�, and renaming ��=T we obtain

	� + 
� = �2m*/��T�1,

�	� − 
��ks,z = �2m*/��T�0. �9�

Noting that the right-hand sides of these equations are inde-
pendent of kz,s, it is straightforward to insert the results for 	
and 
 found above,

	
kz,s�0


��1 + R��̂1�kz,s� + ikz,s
0 ��1 − R��̂2�kz,s��eikz,sd

+ ��1 + R��̂1�− kz,s� + ikz,s
0 ��1 − R��̂2�− kz,s��e−ikz,sd�

= �2m*/��T�1,

	
kz,s�0


��1 + R�kz,s�̂1�kz,s�

+ ikz,s
0 ��1 − R�kz,s�̂2�kz,s��eikz,sd − ��1 + R�kz,s�̂1�− kz,s�

+ ikz,s
0 ��1 − R�kz,s�̂2�− kz,s��e−ikz,sd� = �2m*/��T�0.

�10�

Inverting the Fourier transformation, we obtain

�1 + R��1�d� + ikz,s
0 ��1 − R��2�d� = �2m*/��T�1

− i�1 + R��z��d� + kz,s
0 ��1 − R��2��d� = �2m*/��T�0.

�11�

Solving these equations for R and T and using that the
Wronskian of �1 and �2 is constant yield

R =
i��0/�1���1 + ikz,s

0 ��1� − ��1� + ikz,s
0 ��2��

i��0/�1���1 − ikz,s
0 ��1� − ��1� − ikz,s

0 ��2��
, �12�

T =
− �kz,s

0

m*���1 − ikz,s
0 ��2��0 + i��1� − ikz,s

0 ��2���t�
, �13�

where the envelope functions and their derivatives are evalu-
ated at z=d.

Finally, introducing the electron velocity in the relevant
metal state as �m, we obtain the transmission coefficient: T
= ��m / ��kz,s

0 /m*���T�2. Exploiting reciprocity in the form
��kz,s

0 /m*��m=4kz,s Re��0�
1
*� and defining �=�0 /�1 yield

T =
4kz,s

0 Re���
��1

2 + �kz,s
0 ��2�2

2����2 + ��1�
2 + �kz,s

0 ��2�2�
2� + 2kz,s

0 Re��� + 2��1��1 + �kz,s
0 ��2�2��2�Im���

. �14�

For a given metal/semiconductor interface � is a function of
kz,m, but it does not depend on the potential barrier in region
II. The requirement that the total electron energy E, in addi-
tion to the wave vector k��, be conserved implies a relation-

ship between kz,s
0 and kz,m: E=Es�k�� ,kz,s�=Em�k�� ,kz,m�, where

Es and Em are the relevant bands in the semiconductor and
the metal, respectively. Hence, the transmission coefficient
may be expressed as a function of k�� and E, and the current

SPIN-POLARIZED TUNNELING THROUGH POTENTIAL… PHYSICAL REVIEW B 78, 125202 �2008�

125202-3



density is then calculated as an integral of the form

J�V� = −
e

�
2� 1

2�
�3� dEd2k�T�k��,E,V��f�E� − f�E + eV�� ,

�15�

where f�E� is the Fermi function and V is the voltage
dropped across the potential barrier and the semiconductor/
metal junction. The relationship of the transmission coeffi-
cient to the shape of the barrier and thus to the applied volt-
age across the semiconductor/metal contact is contained in
the wave functions �1 and �2 and their derivatives at the
interface.

Turning now to the case of a ferromagnetic metal, we find
that the spin dependence of the transmission coefficient en-
ters through the difference in kz,m for spin-up and spin-down
electrons near the Fermi energy. Consequently, the parameter
� depends on the spin and may be written as �↑ ,�↓. The
tunneling current is then spin polarized, and the charge- and
spin-current densities may be calculated in analogy to the
above relationship as

J�V� = −
e

�
� 1

2�
�3� dEd2k��T↑�k��,E,V�

+ T↓�k��,E,V���f�E� − f�E + eV�� , �16�

Js�V� = −
e

�
� 1

2�
�3� dEd2k��T↑�k��,E,V�

+ T↓�k��,E,V���f�E� − f�E + eV�� . �17�

The result for the transmission coefficient �Eq. �14��
forms the basis of our numerical calculations described in
Sec. III. However, useful insight is gained by considering the
simpler approximate expression for the transmission coeffi-
cient that is obtained by expanding Eq. �14� to lowest �linear�
order in kz,s

0 ,

T =
4kz,s

0 Re���
�1

2����2 + ��1�/�1�2 + 2��1�/�1�Im����
. �18�

Clearly, the transmission coefficient depends on � and
�1� /�1, with only the latter being voltage dependent. The
spin-transmission coefficient, T↑−T↓, in this approximation
becomes

T↑ − T↓ � 4kz,s
0 ��↑ − �↓���ln �1��2 − �↑�↓�

�1
2��↑

2�↓
2 + ��↑

2 + �↓
2��ln �1��2 + �ln �1��4�

.

�19�

Here we took �↑,↓ to be real, consistent with the estimates
discussed below. The term ��ln �1��2−�↑�↓� in the numera-
tor in Eq. �19� clearly shows that the voltage dependence of
the logarithmic derivative of �1 may control the sign of the
spin transmission.

III. RESULTS

Considering specific examples requires an estimate of the
interface coupling parameters � for majority and minority

spins in the ferromagnetic metal. In general � may be com-
plex. For free particles one obtains the very simple �real�
result: �=kz,m. Generalization of this result to interfaces be-
tween different materials has been discussed within the con-
text of effective-mass theory. One frequently used formula-
tion gives15

� = kz,m�m*/m
m
*�−
. �20�

Here, m
m
* denotes the effective mass of the electrons in the

metal near the Fermi energy and m* is the effective mass in
the semiconductor. The exponent, 
, can take on values in
the range −1�
�0. For m*�m

m
* the coupling parameter �

increases with increasing 
.
We use this approximation for � in the numerical results

described below. To minimize the number of free parameters
we assume that majority and minority electrons in the ferro-
magnetic metal near the Fermi level have the same effective
mass, which we take to be equal to the free-electron mass. In
this model the values of �↑,↓ are different for spin-up and
spin-down electrons near the Fermi level because their wave
vectors are different.

Finally, we need to specify the potential barrier in the
semiconductor �region II� and determine the envelope func-
tions �1�z� and �2�z�. We specifically consider a parabolic
space-charge potential of form V�z�=2�e2nDz2 /�, where nD
is the �ionized� donor density and � is the semiconductor
dielectric constant. In this case, �1�z� and �2�z� are para-
bolic cylinder functions, which may be written in terms of
confluent hypergeometric functions.

For the case of small kz,s
0 , the transmission coefficient �Eq.

�19�� may be evaluated analytically in the asymptotic
limit of a thick barrier, i.e., large built-in potential, Vbi. In
this asymptotic limit, �ln �1��2=d2 /�P

4 , with 1 /�P
4

=4�e2nDm* /�2� and d2= �Vbi−V�� / �2�enD�. In that case
T↑−T↓ �Eq. �19�� changes sign for an applied voltage V that
satisfies

e�Vbi − V� =
�2kF↑kF↓

2m
�m*

m
�2
−1

= �EF↑EF↓�m*

m
�2
−1

.

�21�

Numerical results

Returning now to the more general expression of Eq. �14�
for the transmission coefficient, we calculate the spin and
charge current densities and their ratio, the current polariza-
tion, numerically. Although our model is quite general, in
order to be specific, we now focus on the system consisting
of Fe as the ferromagnetic metal and GaAs as the semicon-
ductor. We use16 kF↑=1.09A−1 and kF↓=0.416A−1,
m*=0.067m,17 and a Schottky barrier height ��B� of
0.7 eV.18 This is the value used for �B unless explicitly
stated otherwise.

The structures investigated experimentally usually have
nonuniform doping: a layer immediately adjacent to the
metal is heavily doped and the bulk of the semiconductor is
lightly doped. We approximate this situation by allowing for
a high �ionized� donor density �nD=5�1018 cm−3, unless ex-
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plicitly stated otherwise� when calculating the space-charge
induced potential profile but using a low electron concentra-
tion �n=5�1016 cm−3� when we set the bulk �T=0 K� semi-
conductor Fermi energy that determines the range of integra-
tion in the calculation of the currents �Eqs. �16� and �17��.

Figure 2 shows the calculated transmission coefficients
for both spin orientations at an energy corresponding to the
Fermi level in the semiconductor and k� =0 as a function of
applied voltage. Positive voltage corresponds to a reverse
biased Schottky contact, i.e., injection of electrons from the
metal into the semiconductor. The transmission coefficient
decreases monotonically with increasing bias; however, the
much greater supply of electrons to be transmitted under re-
verse bias ensures that the current increases with increasing
voltage. Results are shown on semilogarithmic scale for sev-
eral different values of 
 and shifted by factors of 10 �

=−0.6� and 0.1 �
=−0.8� for clarity. Evidently, the calcu-
lated results for spin-up and spin-down transmission coeffi-
cients can cross at relatively small applied bias for certain
coupling strengths. The reversal in sign of the difference in
transmission coefficients is seen more clearly in Fig. 3,
which shows the results of Fig. 2 plotted as 2�T↑−T↓� / �T↑
+T↓� on a linear scale.

Figure 4 shows results for the spin polarization of the
current, Js /J, as a function of the applied voltage for a range
of different 
 values. It is readily seen that the integrations
involved in calculating the current from the energy- and
k�-dependent transmission coefficients do not eliminate the
change in sign of spin polarization, which may occur at rela-
tively small positive or negative applied bias.

Evidently, the bias dependence of the spin polarization of
the current does not only depend on the coupling across the
metal semiconductor interface, here expressed through the
exponent 
. As pointed out above, the voltage dependence of
the tunnel barrier plays a crucial role. Hence, the effect is

also strongly dependent on the height of the equilibrium
Schottky barrier and on the doping level in the semiconduc-
tor just beneath the interface. The former dependence is ex-
plored in Fig. 5 for a range of Schottky barrier heights and
fixed values of 
 and nD. Figure 6 shows the complementary
results for several different doping concentrations and fixed

 and Schottky barrier values.

IV. CONCLUSIONS

A treatment of the transmission through a semiconductor
tunnel barrier at a semiconductor/ferromagnetic metal con-
tact shows that the spin-current polarization of the injected
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coupling parameter 
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�or extracted� electrons can depend quite strongly on the bias
across the junction and may even change sign as a function
of bias. This phenomenon can arise from the voltage induced
change in the shape of the potential barrier, which affects the
transmission coefficients for the two spin orientations to dif-
ferent degrees. The discussion of the numerical results here
focused on a parabolic potential barrier; however this restric-
tion is not essential and the basic approach is readily gener-
alized as shown in the Appendix.

The principal parameter that controls the voltage depen-
dence of interest is the effective coupling coefficient �. A
predictive determination of this quantity is not within the
scope of the bulk electronic structures that form the basis of
our model. It is precisely at this point that the mesoscale
model discussed here links with the microscopic calculation
of Chantis et al.11 The latter stresses the physics of the mi-
croscopic interface but disregards the effects occurring over
the greater length scale of the depletion region. On the other
hand, it may, in fact, be argued that an effective coupling
constant across the interface could depend sensitively on de-
tails of the contact fabrication, which are not entirely con-
trolled. Hence, different � values may be appropriate for
different samples and that this may account for the observa-
tion that changes in sign of the current polarization are ob-
served at positive applied bias in some cases but negative
applied bias in others.9

An additional spin dependent mechanism in GaAs /Fe
Schottky contacts arises from the �relatively weak� spin-orbit
interaction. This effect is not considered in the present work,
but it was recently argued that it may play a role in the
measured anisotropic magnetoresistance of these devices.19

It is of course also possible that, for specific material sys-
tems, details of the electronic structure at the interface con-
tribute to the voltage dependence of the spin current, for
example, if the local interface densities of states for the two
spin directions vary rapidly near the Fermi level.
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APPENDIX

The effective-mass treatment outlined above can be dis-
cretized and solved numerically for arbitrary potential shape
by adopting a formalism based on tight-binding electronic
structure calculations. Discretizing the z axis in small incre-
ments a �a quasilattice constant, although in practice chosen
to be much smaller than the real crystal lattice constant� and
writing the bulk transfer-matrix elements as ts=�2 / �2m*a2�
and tm=�2 / �2ma2�, one can readily generate the bulk bands
of the semiconductor and the metal in effective-mass ap-
proximation provided that ts and tm are sufficiently large, i.e.,
a is chosen to be sufficiently small. The voltage dependent
potential appears as part of the local site energies, and the
transmission through that barrier is easily calculated follow-
ing the iterative method outlined in Ref. 20. An advantage of
this approach is that complex doping profiles are readily in-
corporated. The semiconductor/metal interface matching
condition then reduces to choosing the �in general complex�
transfer-matrix element across the interface. The connection
between that parameter and the usual effective-mass inter-
face matching conditions has been previously explored.21
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FIG. 5. Calculated current spin polarization as a function of
applied bias across a GaAs /Fe Schottky contact for several differ-
ent values of the barrier height. The parameter 
 is taken as 
=
−0.7 and the doping density near the metal/semiconductor interface
as nD=5�1018 cm−3 in all cases.
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FIG. 6. Calculated current spin polarization as a function of
applied bias across a GaAs /Fe Schottky contact for several differ-
ent values of the doping concentration near the metal/
semiconductor interface. The parameter 
 is taken as 
=−0.7 and
the Schottky barrier height as �B=0.7 eV in all cases.
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